# Destination Selection Algorithm in a Server Migration Service

Asato Yamanaka<sup>1</sup>, Yukinobu Fukushima<sup>1</sup>, Tutomu Murase<sup>2</sup>, Tokumi Yokohira<sup>1</sup> and Tatsuya Suda<sup>3</sup>

The Graduate School of Natural Science and Technology, Okayama Univirsity, Japan<sup>1</sup> Cloud System Research Laboratories, NEC Corporation, Japan<sup>2</sup> University Netgroup Inc, USA<sup>3</sup>

## Background (1/2)

IaaS cloud service is attracting attention

- NW-Apps (e.g., online games application) can operate their servers at a data center without any initial cost
- Location of server is fixed at a data center It is difficult for an IaaS provider to provide NW-Apps with good communication QoS NW-App's server



## Background (2/2)

- Server migration service (SMS) can improve communication QoS in IaaS cloud service
- In SMS, we need to
  - Satisfy SLA of as many clients as possible
  - Decrease the migrating server's negative impact (network impact) on its background traffic

by appropriately determining where to locate servers



### **Research** Objective

Previous research of server migration

- Live migration of VMs [1]
  - Decreasing downtime of a migrating server
  - No consideration of network impact
  - Server's destination is determined in advance

#### Research objective

Proposing destination selection algorithms that try to decrease network impact while satisfying SLA of as many clients as possible

<sup>[1]</sup> C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Wareld, "Live Migration of Virtual Machines," in Proceedings of NSDI, May 2005. 2012/09/11

#### Model of Network Application (NW-App)



#### Model of Network Environment



2012/09/11

#### **Procedures of Server Migraion Service**



## Quantification of Network Impact

#### Definition

Number of bits of background traffic that suffer negative effect for the period in which server migration traffic is being transmitted

$$NI = \sum_{i=1}^{n-1} A_i T_i$$

 $A_i$ : Bit rate of background traffic on  $L_i$  [bps]  $T_i$ : Migration time on link  $L_i$  [s]



## **Destination Selection Algorithms**

| Algorithm                                  | Destination WP                                 | Expected effect                                   |
|--------------------------------------------|------------------------------------------------|---------------------------------------------------|
| Minimum Impact Algorithm<br>(MIA)          | Migrate to WP with minimum<br>impact           | Decrease total NW impact                          |
| Maximum Remaining space<br>Algorithm (MRA) | Migrate to WP with the maximum remaining space | Increase the migration success rate in the future |
| Maximum Covering Algorithm<br>(MCA)        | Migrate to WP with the<br>maximum coverage     | Decrease the number of migrations in the future   |

Coverage: The number of routers which the communication QoS is satisfying the SLA between router and WP





2012/09/11

### **Example of Server Migration**



## **Simulation Models**



#### Evaluation Index

- 1. number of \*accommodatable clients
- 2. Total network impact divided by number of accommodatable clients

| Parameter                     | Value    |
|-------------------------------|----------|
| Number of routers             | 14       |
| Number of WPs                 | 14       |
| Capacity of WP                | 4        |
| Number of servers             | 7        |
| Number of clients             | 1000     |
| Number of servers in NW App 1 | 4        |
| Number of servers in NW App 2 | 3        |
| SLA                           | 15~23ms  |
| Link bandwidth                | 10Gbps   |
| Background traffic            | 1Gbps    |
| Server size                   | 500Mbyte |

\*Accommodatable clients: The number of clients whose SLA are satisfied

#### Evaluation Result (Accommodatable Clients)

MRA ZZZ MCA



2012/09/11

#### Evaluation Result (Explanation)

Why MCA shows smaller accommodatable clients than MIA and MRA



### Evaluation Result (Network Impact)



## **Conclusions and Future Works**

#### Conclusions

- Propose and evaluate destination selection algorithms
- When the capacity of the full-cover WP is smaller than the total number of servers
  - MIA shows the best performance
- When the capacity of the full-cover WP is equal to or larger than the total number of servers
  - All the algorithm accommodates almost the same number of clients
  - MCA shows the best performance as to network impact

#### Future Works

- Realization of push-out function
- Performance evaluate in terms of downtime of NW-Apps
- Design of an algorithm for server replication